skip to main content


Search for: All records

Creators/Authors contains: "Ma, Hao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2024
  2. Two-dimensional (2D) polymers are organic analogues of graphene. Compared to graphene, 2D polymers offer a higher degree of tunability in regards to structure, topology, and physical properties. The thermal transport properties of 2D polymers play a crucial role in their applications, yet remain largely unexplored. Using the equilibrium molecular dynamics method, we study the in-plane thermal conductivity of dubbed porous graphene that is comprised of π-conjugated phenyl rings. In contrast to the conventional notion that π-conjugation leads to high thermal conductivity, we demonstrate, for the first time, that π-conjugated 2D polymers can have either high or low thermal conductivity depending on their porosity and structural orientation. The underlying mechanisms that govern thermal conductivity were illustrated through phonon dispersion. The ability to achieve two orders of magnitude variance in thermal conductivity by altering porosity opens up exciting opportunities to tune the thermal transport properties of 2D polymers for a diverse array of applications. 
    more » « less
  3. Abstract

    Hydrogels with tunable viscoelasticity hold promise as materials that can recapitulate many dynamic mechanical properties found in native tissues. Here, covalent adaptable boronate bonds are exploited to prepare hydrogels that exhibit fast relaxation, with relaxation time constants on the order of seconds or less, but are stable for long‐term cell culture and are cytocompatible for 3D cell encapsulation. Using human mesenchymal stem cells (hMSC) as a model, the fast relaxation matrix mechanics are found to promote cell–matrix interactions, leading to spreading and an increase in nuclear volume, and induce yes‐associated protein/PDZ binding domain nuclear localization at longer times. All of these effects are exclusively based on the hMSCs' ability to physically remodel their surrounding microenvironment. Given the increasingly recognized importance of viscoelasticity in controlling cell function and fate, it is expected that the synthetic strategies and material platform presented should provide a useful system to study mechanotransduction on and within viscoelastic environments and explore many questions related to matrix biology.

     
    more » « less